×


In a world increasingly facing new challenges at the forefront of plasma scientific research and technological innovation, CNR and ISTP pledge progress and achieve an impact in the integration of research into societal practices and policy

Power balance analysis at the L-H transition in JET-ILW NBI-heated deuterium plasmas

Vincenzi P.; Solano E.R.; Delabie E.; Bourdelle C.; Snoep G.; Baciero A.; Birkenmeier G.; Carvalho P.; Cavedon M.; Chernyshova M.; Citrin, J.; Fontdecaba J.M.; Hillesheim J.C.; Huber A.; Maggi C.; Menmuir S.; Parra F.

The understanding of the physics underlying the L-H transition has strong implications for ITER experimental reactor and demonstration power plant (DEMO). In many tokamaks, including JET, it has been observed that, at a particular plasma density, n (e,min), the power necessary to access H-mode PL-H is minimum. In the present work, L-H transitions of JET deuterium plasmas heated by neutral beam injection (NBI) are studied for the first time by means of a power balance analysis to characterize the main contributions in the transition, through integrated transport modelling. In the pulses analysed, we do observe a minimum of the L-H power threshold in density, indicating the presence of density branches and of n (e,min). Electron and ion heat fluxes at the transition are estimated separately. The electron/ion equipartition power results in favour of the ions, as shown by QuaLiKiz quasilinear gyrokinetic simulations, which predict a larger ion transport that causes T (e) > T (i). The resulting edge ion heat flux also shows a clear change of slope below n (e,min), similarly to ASDEX-Upgrade (AUG) NBI pulses (Ryter et al 2014 Nucl. Fusion 54 083003). JET NBI data are compared to radio-frequency heated AUG and Alcator C-mod pulses (Schmidtmayr et al 2018 Nucl. Fusion 58 056003), showing a different trend of the power, coupled to ions at the L-H transition with respect to the linearity observed in the radio-frequency heated plasmas. The presence of n (e,min) and the role of the ion heat flux is discussed in the paper, although it seems it is not possible to explain the presence of a PL-H minimum in density by a critical ion heat flux and by the equipartition power for the JET NBI-heated plasmas analysed.

ID 474042
DOI 10.1088/1361-6587/ac97c0
PRODUCT TYPE Journal Article
LAST UPDATE 2022-12-07T16:28:04Z
EU PROJECT EUROfusion
TITLE Implementation of activities described in the Roadmap to Fusion during Horizon 2020 through a Joint programme of the members of the EUROfusion consortium
FOUNDING PROGRAM H2020
TOP