×


In a world increasingly facing new challenges at the forefront of plasma scientific research and technological innovation, CNR and ISTP pledge progress and achieve an impact in the integration of research into societal practices and policy

Study the erosion of Eurofer-97 steel with the linear plasma device GyM

Uccello A.; Ghezzi F.; Kovac J.; Ekar J.; Filipic T.; Bogdanovic Radovic I.; Dellasega D.; Mellera V.; Pedroni M.; Ricci D.; GyM Team

This work reports on the investigation of Eurofer-97 erosion behaviour when exposed to the deuterium plasma of the linear device GyM. The erosion dependence of Eurofer-97 on the deuterium ion fluence, 1025 m-2, and temperature of the samples, T = 600 K and 990 K, was addressed. A bias voltage of -200 V was applied to GyM sample holder during the experiments. Samples were deeply characterised by: profilometry, scanning electron microscopy, atomic force microscopy, energy-dispersive X-ray spectroscopy, time-of-flight secondary ion mass spectrometry, Rutherford backscattering spectroscopy and particle-induced X-ray emission. The behaviour of Eurofer-97 erosion rate with the ion fluence strictly depends upon temperature. At 600 K, it was 0.14 nm/s after 4.7 × 1024 m-2, then decreased, reaching a steady state value of 0.01 nm/s from 8.0 × 1024 m-2. At 990 K instead, the erosion rate was roughly constant around 0.019 nm/s for 1025 m-2. The value at 2.35 × 1025 m-2 was slightly lower. The erosion rate at 990 K was greater than that at 600 K for every ion fluence. Microscopy and surface analysis techniques showed that Eurofer-97 erosion rate dependence on at 600 K was primarily determined by the preferential sputtering of iron and other mid-Z elements of the alloy, leading to a surface rich in W and Ta difficult to be sputtered. The erosion behaviour at 990 K was dominated by the morphology dynamics, instead. The different properties of the morphology developed at the two temperatures can explain the higher erosion rate at 990 K for all the ion fluences.

ID 479549
DOI 10.1016/j.nme.2023.101422
PRODUCT TYPE Journal Article
LAST UPDATE 2023-07-04T16:32:26Z
EU PROJECT EUROfusion
TITLE Implementation of activities described in the Roadmap to Fusion during Horizon 2020 through a Joint programme of the members of the EUROfusion consortium
FOUNDING PROGRAM H2020
TOP