In a world increasingly facing new challenges at the forefront of plasma scientific research and technological innovation, CNR and ISTP pledge progress and achieve an impact in the integration of research into societal practices and policy

Modelling one-third field operation in the ITER pre-fusion power operation phase

Schneider, M.; Polevoi, A. R.; Kim, S. H.; Loarte, A.; Pinches, S. D.; Artaud, J-F; Militello-Asp, E.; Beaumont, B.; Bilato, R.; Boilson, D.; Campbell, D. J.; Dumortier, P.; Farina, D.; Figini, L.; Gribov, Y.; Henderson, M.; Khayrutdinov, R. R.; Kavin, A. A.; Kochl, F.; Kurki-Suonio, T.; Kuyanov, A.; Lamalle, P.; Lerche, E.; Lukash, V. E.; Messiaen, A.; Parail, V; Sarkimaki, K.; Snicker, A.; Van Eester, D.

In the four-stage approach of the new ITER Research Plan, the first pre-fusion power operation (PFPO) phase will only have limited power available from external heating and current drive (H&CD) systems: 20-30 MW provided by the electron cyclotron resonance heating (ECRH) system. Accessing the H-mode confinement regime at such low auxiliary power requires operating at low magnetic field, plasma current and density, i.e. 1.8 T and 5 MA for a density between 40% and 50% of the Greenwald density. II-mode plasmas at 5 MA/1.8 T will also be investigated in the second PFPO phase when ITER will have its full complement of H&CD capabilities installed, i.e. 20-30 MW of ECRH, 20 MW of ion cyclotron resonance heating and 33 MW of neutral beam injection. This paper describes the operational constraints and the II&CD capabilities for such scenarios in hydrogen and helium plasmas, to assess their viability and the issues it will be possible to address with them. The modelling results show that 5 MA/1.8 T scenarios are viable and will allow the exploration of the H-mode physics and control issues foreseen in the ITER Research Programme in the PFPO phases.

ID 444516
DOI 10.1088/1741-4326/ab3de0
PRODUCT TYPE Journal Article
LAST UPDATE 2022-04-06T09:43:15Z