×


In a world increasingly facing new challenges at the forefront of plasma scientific research and technological innovation, CNR and ISTP pledge progress and achieve an impact in the integration of research into societal practices and policy

Development of a concept and basis for the DEMO diagnostic and control system

Biel W.; Ariola M.; Bolshakova I.; Brunner K.J.; Cecconello M.; Duran I.; Franke Th.; Giacomelli L.; Giannone L.; Janky F.; Krimmer A.; Luis R.; Malaquias A.; Marchiori G.; Marchuk O.; Mazon D.; Pironti A.; Quercia A.; Rispoli N.; El Shawish S.; Siccinio M.; Silva A.; Sozzi C.; Tartaglione G.; Todd T.; Treutterer W.; Zohm H.

An initial concept for the plasma diagnostic and control (D&C) system has been developed as part of European studies towards the development of a demonstration tokamak fusion reactor (DEMO). The main objective is to develop a feasible, integrated concept design of the DEMO D&C system that can provide reliable plasma control and high performance (electricity output) over extended periods of operation. While the fusion power is maximized when operating near to the operational limits of the tokamak, the reliability of operation typically improves when choosing parameters significantly distant from these limits. In addition to these conflicting requirements, the D&C development has to cope with strong adverse effects acting on all in vessel components on DEMO (harsh neutron environment, particle fluxes, temperatures, electromagnetic forces, etc.). Moreover, space allocation and plasma access are constrained by the needs for first wall integrity and optimization of tritium breeding. Taking into account these boundary conditions, the main DEMO plasma control issues have been formulated, and a list of diagnostic systems and channels needed for plasma control has been developed, which were selected for their robustness and the required coverage of control issues. For a validation and refinement of this concept, simulation tools are being refined and applied for equilibrium, kinetic and mode control studies.

ID 466499
DOI 10.1016/j.fusengdes.2022.113122
PRODUCT TYPE Journal Article
LAST UPDATE 2023-06-20T17:46:04Z
EU PROJECT EUROfusion
TITLE Implementation of activities described in the Roadmap to Fusion during Horizon 2020 through a Joint programme of the members of the EUROfusion consortium
FOUNDING PROGRAM H2020
TOP