×


In a world increasingly facing new challenges at the forefront of plasma scientific research and technological innovation, CNR and ISTP pledge progress and achieve an impact in the integration of research into societal practices and policy

Characterization of signals for a Divertor Tokamak Test facility interferometer/polarimeter system

Fiorucci D.; Giudicotti L.; Innocente P.; Terranova D.; Mazzotta C.; Tudisco O.

In magnetically confined fusion experiments, laser interferometer/polarimeter systems allow one to determine plasma density, give valuable information on the internal magnetic fields, and contribute to the evaluation of the plasma magnetic equilibrium and to the real-time estimation of the q profile to allow feedback configuration control. This work presents an analysis of the interferometric and polarimetric signals of a multi-chord far-infrared interferometer/polarimeter for the divertor tokamak test facility, the new tokamak device currently under construction in Italy. The polarimetric signals are calculated both with approximate formulas and by solving the equation describing the evolution of the laser beam polarization inside the plasma using the Mueller formalism. The latter method correctly accounts for crosstalk between Faraday rotation and the Cotton-Mouton effect. The impact of the plasma birefringence on the interferometric phase shift is also studied, and it is found that a perturbation of the interferometric phase shift is present also in the case of an initial fixed linear polarization of the probe laser beam.

ID 447272
DOI 10.1063/5.0043516
PRODUCT TYPE Journal Article
LAST UPDATE 2022-04-11T16:03:37Z
TOP