×


In a world increasingly facing new challenges at the forefront of plasma scientific research and technological innovation, CNR and ISTP pledge progress and achieve an impact in the integration of research into societal practices and policy

1-dim Collisional Radiative impurity transport code with internal particle source for TESPEL injection experiments in RFX-mod2.

Carraro L.; Innocente P.; Tamura N.

Conference: 46th European Physical Society Conference on Plasma Physics (EPS 2019), pp. 1 - 4 , Milan, Italy , 8-12 July 2019 Year: 2019
ISTP Authors:
Paolo Innocente
Lorella Carraro

Keywords: , ,
Research Activitie:

Clear evidences that, due to a strong outward impurity convection, impurity core penetration is prevented have been found in the RFX-mod RFP device. A comparable convection of the main gas has not been observed [1] so that a favorable situation with peaked or flat density profiles and hollow impurity profiles is produced. Analysis of impurity transport relies on best reconstruction of impurity emission pattern with a 1-dim Collisional-Radiative code in which the radial impurity flux is schematized as a sum of a convective and a diffusive term [2,3]. The diffusion coefficient D and the velocity V, which are input to the simulation are varied until the experimental emission is reproduced. While the steady-state impurity profile is determined by the ratio V/D (peaking factor) , the discrimination between D and V requires transient perturbative experiments. The experimental evidence of impurity outward convection in RFX-mod helical regimes occurring at high plasma current (I>1.2 MA) has been found in Li and C solid room temperature pellets experiments [4], Ne doped D2 cryogenic pellet injection, Ne gas puffing and Ni LBO experiments [5](W LBO didn’t show accumulation effects too). Similar D and V have been found for all the considered impurity species, without strong dependence on mass/charge. RFX-mod is now being upgraded to RFX-mod2, aiming at reducing secondary tearing mode amplitude which affects the duration of the improved confinement Single Helicity states [6]. In order to perform more detailed analysis of the impurity transport inside the outward convection barrier, the impurity source should be further inside the plasma. With this aim, Ni-tracer encapsulated solid pellet (Ni-TESPEL) experiments are foreseen in the new device [7]. The available 1-dimensional, time dependent Ni Collisional Radiative code, used to reconstruct experimental Ni emissions in RFX-mod [ 4] has been upgraded in preparation of such experiments in RFX-mod2 including the possibility of a Ni source (boundary condition) inside the plasma, placed in a time dependent position. The solid pellet injector already used in RFX-mod to inject C and Li solid pellets, will be adapted to inject TESPEL in RFX-mod2 (0.7/0.9 mm polystyrene ball with Ni powder inside, injection velocity up to 200 m/s can be reached). In this contribution, the solid pellet injector will be described, simulations of the pellet ablation [8] for different scenarios of RFX-mod2 plasma will be presented, Ni ion density, line and continuum emission profiles predicted by the code will be described and discussed.

ID 404474
PRODUCT TYPE Conference Proceeding
LAST UPDATE 2022-03-09T16:55:31Z
EU PROJECT EUROfusion
TITLE Implementation of activities described in the Roadmap to Fusion during Horizon 2020 through a Joint programme of the members of the EUROfusion consortium
FOUNDING PROGRAM H2020
TOP